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We investigate in this paper the geometric convergence of the Lagrange and
Hermite interpolation processes and the Gauss-Jacobi quadrature formula of an
entire function and its higher derivatives when the nodes of interpolation are taken
to be the zeros of the orthogonal polynomials associated with the very smooth
Freud weight

w.(x) = exp( -2Ixl·), IX>O, xER

In each of these approximations, we give a numerical bound on the growth of the
function and we estimate the corresponding error term. © 1992 Academic Press, Inc.

1. MOTIVATION

Let W be the class of the Freud weights of the form wQ(x) =
exp{ -2Q(x)}, XE IR, where

(i) Q(x) is an even, differentiable function, except possibly at x=O,
increasing for x > 0,

(ii) there exists p < 1 such that xPQ'(x) is increasing, and

(iii) the sequence {qn} determined by qsQ'(qs)=s satisfies the condi
tion q2n/qn ~ c> 1, n = 1, 2, 3, ..., for some constant c independent of n.
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Observe that whenever Q(x)= Q~(x)= Ixl" Cl~ 1, then

»'Q(x) = w~(x) = exp( -2Ixl~) E W.

Also, for an entire function j; let

-Ii maxl:1 ~ R (loglf(z)l) If'

K - ~~s~p 2Q(R) , Z E 'l-,

and let Qn(wQ;f) be the Gauss--Jacobi quadrature formula of f based on
the zeros of the orthogonal polynomials associated with the weights W Q of
the class W.

In 1980, AI-Jarrah [1] proved the following theorem. There exists a
constant A E (0, 1), depending on Q only, such that if K ~ A, then

li~_s~p It f(x) exp( - 2Q(x)) dx - Qn(WQ;ff,n < 1.

In 1983, Lubinsky [11] investigated geometric convergence for rules of
numerical integration and the associated Lagrange interpolation polyno
mials over unbounded contours and intervals. Lubinsky's results contain,
among other things, AI-Jarrah's results of [1]. He also removed restriction
(iii) on the class W (see [11; Theorem 5.1 ]). Later on, AI-Jarrah [4, 5]
obtained some results similar to those in [1] concerning the Lagrange and
the Hermite interpolation processes. Neither Al-Jarrah nor Lubinsky gave
a numerical value to the constant A. However, Al-Jarrah [2--5]
investigated the values of A for the special weights w~(x) = exp( -2Ixl~),

x E IR, Cl = 2,4, and 6, using the validity of Freud's conjecture for these
weights.

In this paper, we investigate the values of A, not necessarily best
possible, for the class of Freud weights Wa (x) = exp( - 21xl ~), x E IR, Cl > O.
This investigation was made possible after the proof of Freud's conjecture
for exponential weights was published by Lubinsky, Mhaskar, and SalT
[12, 13] in a more general form.

Before closing this section, we point out that, among others, the papers
of Goncar and Rahmanov [9], Knopfnacher and Lubinsky [to], Mhaskar
[14,15], Mhaskar and SalT [16], and Nevai [17] are also close in spirit
to the subject matter of this paper.

2. INTRODUCTION

Given the very smooth Freud weight function

Cl > 0, X E IR,
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it is well known that there exists a unique sequence of orthonormal polyno
mials {Pn(w~; x)} (see [6,1.1]) associated with w~(x) with the properties:

(i) Pn(w~;x)=Ynxn+ ... is a polynomial of degree nand Yn>O;

(ii) fIR Pn( w~; x) Pm(W~; x) W~(x) dx = Jnm , the Kronecker delta.

The zeros {Xkn}~=l of Pn(w~;x) are all real and simple. We assume, as
usual, that Xl n> X2n > ... > Xnw

For a given function! on IR, the Lagrange interpolation polynomial
Ln(w~;f) associated with w~(x) is defined to be the unique polynomial of
degree at most n - 1 which coincides with! at the nodes Xkw In fact,

n

Ln(w~;f; x) = L !(Xkn) lkn(x),
k=l

where lkn(x) are the fundamental polynomials of Lagrange interpolation
defined by

(k= 1, 2, 3, ..., n).

If, in addition, the function! is differentiable, then the Hermite interpola
tion polynomial Hn(W~;f) associated with w~(x) is defined to be the
unique polynomial of degree 2n - 1 at most which satisfies

(k= 1, 2, 3, ..., n).

The Gauss-Jacobi quadrature formula to the function! that is associated
with w~(x) is defined by

n

Qn(w~;f)= L An(W~;Xkn)!(Xkn)
k=l

where the c.oefficients An(W~; Xkn) are the Christoffel numbers and are given
by

n-I

A;I(W~;X)= L p~(w~;x),
k=1

and the nodes Xkn are the Gaussian abscissas with respect to w~(x).
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Iff is an entire function, then the error terms when approximating f by
Ln(wrx;f), Hn(wrx;f), and Qn(wrx;f) are given by

(2.1)

(2.2)

and

t f(x) wrx(x) dx- Qn(wrx;f)

= f rk+l'~f f(z)dz , (2.3)
k=n h 2m Ck Pk(W rx ;z) Pk + ,(wrx , z)

respectively, where ~ E C, Ck ~ ~ ~ C, and ~ is a simply connected domain
containing the zeros of Pk(w rx ;x) in its interior. For more on (2.1) and (2.2)
see [6, III, 8.4], and for more on (2.3) see [7].

3. MAIN RESULTS

Throughout the rest of this paper, f will be an entire function, and
wrx (x)=exp(-2Ixl rx ), il>O, xEIR. To simplify the statement of our main
results, we first introduce some notations. Let a be the positive solution of

(I-x) (I-X)
g(x)=-4- exp h = 1, (a~O.23),

and let

(1 - a )(rx+ 2)/2

t(il) = 2(il+2)P:a'

For more-on the function r(il), see the appendix at the end of the paper.
Finally, we let

and

J~rx,m)=f pm)(x) wrx(x) dx- Qn(wrx;f(m»),
IR

(m=O, 1,2, ... )

. log Mf(R)
(J = hm sup 2Rrx '

R- 00

where Mr(R)= max If(z)l, ZEc'
. I_I =R
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We now formulate our main results.

THEOREM 3.1. If (1 < r( (X), then

lim sup (ILl ~""m)1 )I/n < 1,
n~ 00

for all m = 0, 1, 2, ....

THEOREM 3.2. If (1 < !r( (X), then for any ~ E C, we have

lim sup (If(m)(~) - Ln(w",; f(m); ~)I )I/n < 1,

for all m =0, 1, 2, ... ,

THEOREM 3.3. If (1 < r( (X), then for any ~ E C, we have

lim sup (If(m)(~) - Hn(w",; pm); ~)I )I/n < 1,
n~ 00

127

for all m = 0, 1,2, ....

Moreover, the last two theorems hold uniformly on compact subsets of the
complex plane.

4. PRELIMINARY RESULTS

The following preliminaries are needed for the proof of our main results:

LEMMA 4.1. For the weight function w",(x), we have

Yk-I 2max --~Xln~ max
I,,;;,k";;'n-I Yk I,,;;,k";;'n-I

[nI2] n-I (Y )2
L X~n= L ~ ,
k~1 k~1 Yk

lim n -1/'" . Yn - I _ f3 '"
n~oo Yn - 2'

andfor all ZEC with Izi ~Xln' we have

Yk-I

Yk
(4.1 )

(4.2)

(4.3)

(4.4)

For the proof of (4.1), (4.2), (4.3), and (4.4), see [8], [2], [13], and [4],
respectively. In fact, (4.3) is a more generalized form of Freud's conjecture
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for exponential weights, which was formulated only for the case when IX is
a positive even integer.

LEMMA 4.2.

1
. Mflmj(R)
1m sup ~ (1,

R- 00 2R"

for all m = 1, 2, 3, ....

The proof of this lemma can be easily extracted from [5, Lemma 5].
The remaining two lemmas are based on the weight function w,,(x). The

first one is a generalization of [3, Lemma 3.6].

LEMMA 4.3. For any '1 > 0, there exists N~ EN, such that, for all n ~ N ~,

we have

(4.5)

(4.6)

and

(4.7)

where K( IX, '1) and A (IX, '1) are two positive constants that depend on IX and '1
only.

Proof Choose '1 > 0. Then from (4.3), it follows that there exists an
N~ EN such that, for all n ~ N~, we have

(4.8)

From (4.1) and (4.8), we get

-- 2 Yk - I -- 2 (P" ) II"xI.n+l~ max --~ -2 +'1 n ,
I'i(,k'i(,n Yk

which proves (4.5).
From (4.2), it follows that, for large enough n,

[nI2] n-I (Y )2 N~-t (Y )2 n-I (Y )2L x~n = L ~ = L ~ + L .k..! .
k= I k~ I Yk k= t Yk k = N~ Yk

(4.9)
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By using (4.1), we have

and so

From (4.8), we conclude that

129

Therefore, by using (4.9) and the last two inequalities, we conclude that

where

Kc(1X .. ) = (N _ 1)x2 + (_a_)(Po< +..)2 N(O< + 2)/0<
, " ~ IN. IX + 2 2' J ~ ,

which proves (4.6).
Finally, to prove (4.7), we start with (4.8) to get

1 1 (Po< ) 1/-:::0;-- -+y/ n 0<
Yn Yn-I 2

:::0; _1_ (~+ y/)2 [n(n _ 1)] I/o<
Yn- 2

(4.10)
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Next, from (4.1) we have

which gives

for all k= 1, 2,3, ..., N,,-l.

Therefore,

By combining this inequality with (4.10), we can easily see that

1 A( )({3" )2n( ,)2/"
y~ ::::; rx, t'f 2 + t'f n. ,

where

which completes the proof of the lemma.

LEMMA 4.4. For all z E C, with Izi > X In' we have

1
IPn(w;z)I-I::::;-I-ln

Yn Z

{
K(rx, t'f) + (rx/(rx + 2))({3,,/2 + t'f)2 n(<X+ 211"}

x exp I 12 2 'Z -X ln

andfor alllzi >xI.n+l, we have

(4.11 )

IPn(w,,; z) Pn+ I(W,,; Z)I-I

1 1
~--.--

""YnYn+l Izl 2n+1

{
2K(rx, t'f) + 2(rx/(rx + 2))({3,,/2 + t'f)2 (n + l)(<X+2

11"} (4.12)
.exp I 12 2 '

Z -xI,n+1

where K( rx, t'f) as in Lemma 4.3.
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Proof First, we note that (4.12) is a direct consequence of (4.1\) and
the fact that x In < X l.n + 1. So we give the proof of (4.11) only.

Since w~ is an even weight function, it follows that (see [ 18,
Sect. 2.3 (2)] )

[n/2 ]

P (HI • ~)=" ~n-2rn/21 n (7 2_X2 )
n 't:x,.. (n4. - k" .

k ,= 1

Hence, for any zE C, with Izi > XI'" we have

[n12 ]

IPn(w~;z)1 =Ynlzln 2[n/2] n Iz2 -xZn l
k, 1

and we also have

\ \

1712-X2 ~ Iz1 2 -X2 '
- kn In

which implies that

for all k = 1, 2, 3, ..., n,

The proof of (4.11) follows by combining (4.6) with this last inequality.

5. PROOFS OF THEOREMS 3.1-3.3

The proofs of Theorems 3.1-3.3 start by looking at the error terms that
are given in (2.1), (2.2), and (2.3). In each case, we take the absolute value
of the error and we estimate the factors that appear on the right-hand side
from above. The previous section gives us basically all the estimates that
are needed to accomplish this task. Moreover, the same technique that we
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used in the proof of [1, Theorem 2.1] can be used in proving these
theorems. Hence, in view of this brief introduction, we find it appropriate
to prove Theorem 3.1 only.

Proof of Theorem 3.1. From Lemma 4.2, it can easily be seen that the
proof will be finished if we show that

lim sup (1.,1 ~a,o)1 )l/n < L

To do so, let

and choose en to be the circle Izi = Rn, such that

for a < e < 1. (5.1 )

Using (4.12) with Izi = R n, we conclude that

IPn(wa; z) Pn+ l(Wa; z)I- 1

1 1
~--'2;;+1

YnYn+l R n

{
2K(a, '1) + 2(a/(a + 2) )(Pa/2 + '1)2 (n + l)(H 2 l1a}

·exp 2 . (5.2)
eRn

From the assumption that 11'=limsuPR~oo (log M r(R))/2R a
, we can find,

for any b > 0, an No EN such that

(5.3 )

for all R n ~ No.
Using (5.2), (4.7), and (5.3), we conclude, for large enough R n , that

IInl ~ A(a, '1) (~" + '1yn (n !)2/a. R\n

. exp {2(11' + b) R~ + (2K(a, n) + 2 ex: 2)
. (~a + '1)

2

(n + 1)(a + 2)/" ) IeR~}.
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Next, we choose an Rn which minimizes the right-hand side of this last
inequality, and which, at the same time, satisfies (5.1) for a < e< 1. So we
consider the function

By differentiating h(R) and setting h'(R) = 0, we get

Hence, we choose R n to satisfy (5.4), and from this choice of R n and (4.5),
we obtain that

Consequently, (5.1) will be satisfied if

(l_e)(H2 l/2 (l_a)(cr+2 l/2

0"+15= < =r(:x).
2(IX + 2) P~E 2(IX + 2) p~a

From (5.4), we have

2(0" + 15) R~ = 2n + (4K(IX, '7) + 4 (_IX_)
IX IX+2

Therefore,

(5.5 )
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{
2n (4+2a)(a+2f/(H2) (a + <5)2/(H2)

exp ~ + 22/(" + 2)e"/(" + 2)a(f3,,/2 + rJ )4/(" + 2) (n + 1)2/"

By using (5.5) and the Stirling formula, we can rewrite the last inequality,
for sufficiently large n, as

where A *(a, rJ) is a constant that depends on a and rJ, bn --+ 0 as n --+ 00, and
T,(rJ) --+ 0 as rJ --+ 0, i = 1, 2.

Since g(e) = ((1 - e)/4) exp((1 - e)/26) is a continuous, decreasing
function on (0, 1) and g(a) = 1, it follows that 0 < g(e) < 1 for a < e< 1.
Consequently, we can find, for a small enough rJ and a large enough n, a
number p < 1 such that

which establishes that the series Lk Ilkl is convergent.
Therefore, for sufficiently large n, we have

1L1~",O)1 ~ k~n Ilkl ~ M(a, 11, e) n·r1
~e) (1 + T,(rJ))

·exp [b n +C~ e) (l +T2(I1))Jr,

where M(a, rJ, e) is a constant that depends on a, rJ, and e.
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lim sup 1A~lX.O)ll/n
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Since '1 can be chosen as small as we like, and Tj ('1) ~ 0 as '1 ~ 0, it follows
that

which proves Theorem 3.1.

ApPENDIX

We conclude this paper by giving a table of the approximate values of
-r(oc) for some values of oc in [0.1,10.0] (see Table I), and we also give two
graphs of -r(oc) for oc in [0.0, 10.0] and [0.0; 30.0] (see Figs. I and 2). The
table and the graphs were obtained and plotted by Mathematica on a
Macintosh Pc.

TABLE I

Cl r(Cl) Cl r(Cl)

0.1 0.0726623 5.2 0.199904
0.4 0.20815 5.5 0.190176
0.7 0.274788 5.8 0.180896
1.0 0.306916 6.1 0.172052
1.3 0.320245 6.4 0.163636
1.6 0.322793 6.7 0.155634
1.9 0.31898 7.0 0.148028
2.2 0.311377 7.3 0.140803
2.5 0.301544 7.6 0.133942
2.8 0.290456 7.9 0.127427
3.1 0.278733 8.2 0.121242
3.4 0.26678 8.5 0.115371
3.7 0.254857 8.8 0.109797
4.0 0.243136 9.1 0.104506
4.3 0.231724 9.4 0.099482
4.6 0.220692 9.7 0.0947121
4.9 0.210078 10.0 0.0901826
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