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We investigate in this paper the geometric convergence of the Lagrange and
Hermite interpolation processes and the Gauss—Jacobi quadrature formula of an
entire function and its higher derivatives when the nodes of interpolation are taken
to be the zeros of the orthogonal polynomials associated with the very smooth
Freud weight

w,(x)=exp(—2|x|*), >0, xeR.

In each of these approximations, we give a numerical bound on the growth of the
function and we estimate the corresponding error term.  © 1992 Academic Press, Inc.

1. MOTIVATION

Let W be the class of the Freud weights of the form wy(x)=
exp{ —2Q(x)}, xe R, where

(i) Q(x) is an even, differentiable function, except possibly at x =0,
increasing for x>0,

(ii) there exists p <1 such that x*Q’'(x) is increasing, and

(iii) the sequence {g,} determined by ¢,0Q’'(q,) = s satisfies the condi-
tion ¢,,/q,=c>1, n=1,2,3, .., for some constant ¢ independent of n.
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Observe that whenever Q(x)= Q.(x)=|x|*, a>1, then
wolx)=w,(x)=exp(—2|x|*)e W.

Also, for an entire function f, let

K = lim sup max... =222((1}‘;§|f(2)l)

s zeC,

and let Q,(wy; f) be the Gauss-Jacobi quadrature formula of f based on
the zeros of the orthogonal polynomials associated with the weights w, of
the class W.

In 1980, Al-Jarrah 1] proved the following theorem. There exists a
constant 4 € (0, 1), depending on Q only, such that if K< 4, then

S 1in

ka(x)exp( —20(x))dx—Q,(wo; f)| <L

lim sup

no—

In 1983, Lubinsky [11] investigated geometric convergence for rules of
numerical integration and the associated Lagrange interpolation polyno-
mials over unbounded contours and intervals. Lubinsky’s results contain,
among other things, Al-Jarrah’s results of [1]. He also removed restriction
(ii1) on the class W (see [11; Theorem 5.1]). Later on, Al-Jarrah [4, 5]
obtained some results similar to those in [1] concerning the Lagrange and
the Hermite interpolation processes. Neither Al-Jarrah nor Lubinsky gave
a numerical value to the constant A. However, Al-Jarrah [2-53]
investigated the values of A for the special weights w,(x) =exp(—2|x|*),
xeR, «=2,4, and 6, using the validity of Freud’s conjecture for these
weights.

In this paper, we investigate the values of 4, not necessarily best
possible, for the class of Freud weights w,(x)=exp(—2|x|*), xeR, a>0.
This investigation was made possible after the proof of Freud’s conjecture
for exponential weights was published by Lubinsky, Mhaskar, and Saff
[12,13] in a more general form.

Before closing this section, we point out that, among others, the papers
of Goncar and Rahmanov [9], Knopfnacher and Lubinsky [10], Mhaskar
[14, 15], Mhaskar and Saff [16], and Nevai [17] are also close in spirit
to the subject matter of this paper.

2. INTRODUCTION
Given the very smooth Freud weight function

w, (x)=exp(—2|x]*%), x>0, xeR,
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it is well known that there exists a unique sequence of orthonormal polyno-
mials {p,(w,;x)} (see [6, 1.1]) associated with w,(x) with the properties:

(i) pu(wy; x)=v,x"+ --- is a polynomial of degree » and y,>0;
(i1) jR PuWy; X) p(w,; x) w,(x)dx =39,,,, the Kronecker delta.

The zeros {x;,}%_, of p,(w,; x) are all real and simple. We assume, as
usual, that x,,>x,,> --- > x,,.

For a given function f on R, the Lagrange interpolation polynomial
L,(w,; f) associated with w,(x) is defined to be the unique polynomial of
degree at most n — 1 which coincides with f at the nodes x,,. In fact,

L (wa’f x = Z f(xkn lkn

where [,,(x) are the fundamental polynomials of Lagrange interpolation
defined by

Pa(Was X)
LX) = — . (k=1,2,3,..n)
. ( pn(wa;xkn)(x_xkn)

If, in addition, the function f is differentiable, then the Hermite interpola-
tion polynomial H,(w,;f) associated with w,(x) is defined to be the
unique polynomial of degree 2n — 1 at most which satisfies

Hn(wa;f; xkn) =f(-xkn)’ H;l(w(!’f9 xkn) =f,(xkn)’ (k = 15 2’ 3, Rt n)'

The Gauss—Jacobi quadrature formula to the function f that is associated
with w,(x) is defined by

0wei )= T hnlwsixin) fis)  ( ~[ S wato) )
k=1 R

where the coefficients 4,(w,; x,,) are the Christoffel numbers and are given
by
n—1

AWy X) =Y, pi(wy; x),

k=1

and the nodes x,, are the Gaussian abscissas with respect to w, (x).



126 AL-JARRAH AND HASAN

If fis an entire function, then the error terms when approximating f by
Ly(wy; [), Hy(w,; f), and Q,(w,; f) are given by

ooy PaWa; €) f(z) dz
SO = Lywsi f,6) =25 gﬁa PRt 2.1)
RN < Y9 f(z)dz
@) —H,(w,; ;&)= pral A oy (2.2)
and
JRf(x)Wa(x)dx—Qn(wa;f)
_y Deer b f(z)dz
_,E,, e 271’1.(};0, PeWai2) P si(Wy, 2)° (2.3)

respectively, where (€ C, C, =€ 2 < C, and 2 is a simply connected domain
containing the zeros of p,(w,; x) in its interior. For more on (2.1) and (2.2)
see [6, 111, 8.4], and for more on (2.3) see [7].

3. MaAIN RESULTS
Throughout the rest of this paper, f will be an entire function, and

w,(x)=exp(—2|x|*), >0, xeR. To simplify the statement of our main
results, we first introduce some notations. Let a be the positive solution of

g == e (1 _x> =1, (ax023),

4 2x
and let
(=gt I D A TN
t(a)—m’ where B“_[Z“'Z{I’(a/Z)}z]

For more-on the function 7(a), see the appendix at the end of the paper.
Finally, we let

aEm=[ ) walx) de—Quwai ™) (m=0,1,2,..)

and

log M,(R)

6 =lim sup R

R—

where M (R)= max |f(z)|, zeC.
X lel=R
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We now formulate our main results.
THEOREM 3.1. If 0 <1(a), then
lim sup (|4>™)'/" <1,
o
for allm=0,1,2, ...

THEOREM 3.2. If 0 < it(a), then for any & € C, we have

lim sup (| £ (&) — L,(w,; f; )" < 1,

forallm=0,1,2, ...

THEOREM 3.3. If 6 <1(a), then for any £ € C, we have

lim sup (| ™€) — Hy(w; £ O < 1,

n— o

for all m=0,1,2, ...

Moreover, the last two theorems hold uniformly on compact subsets of the
complex plane.

4. PRELIMINARY RESULTS
The following preliminaries are needed for the proof of our main results:

LeMMA 4.1.  For the weight function w,(x), we have

max Yk_ISxanZ max b, 4.1)
t<ksn—1 Yy I<k<n—1 Yy
[n/2] "l \?
X X=X ( ) (42)
k=1 k=1\ Tk
lim n-ve.tozt P .
7 — o0 Y 2 (4.3)
and for all ze C with |z| < x,,,, we have
|2a(Wa; 2)| <27y, x7,. (4.4)

For the proof of (4.1), (4.2), (4.3), and (4.4), see [8], [2], [13], and [4],
respectively. In fact, (4.3) is a more generalized form of Freud’s conjecture
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for exponential weights, which was formulated only for the case when « is
a positive even integer.

LeEMMA 4.2.

M m(R
lim sup ol )<

=
R-w 2R ’

forallm=1,23, ...

The proof of this lemtna can be easily extracted from [5, Lemma 5].
The remaining two lemmas are based on the weight function w,(x). The
first one is a generalization of [3, Lemma 3.6].

LemMA 4.3. For any n>0, there exists N, € N, such that, for alln>N,,
we have

onza(Ban)e 05
jﬁj xk,,SK((x,n)+< +2)(ﬂa+’7> plx+ 2 (4.6)

and
<G+ ) (n1)? (47)

where K(a, ) and A(«, n) are two positive constants that depend on o and n
only.

Proof. Choose n>0. Then from (4.3), it follows that there exists an
N, €N such that, for all n> N,, we have

?nqS(%*_") nl/x (4.8)
From (4.1) and (4.8), we get
Xy ne1 2 max Vet (ﬁ“ )n
I<k<n Yy

which proves (4.5).
From (4.2), it follows that, for large enough n,

[n/2] n—1 Yeo1 2 Ny—1 Vi1 2 n—1 Ve_1 2
Y ohm (Bt T (2T (B) @)
k=1 Vi

k=1 Yk k=1 yk k=N,
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By using (4.1), we have

Ye—
max <Xy p,
L<k<Ny—1\ Y& !

Nzl fy N2 Mgt
) < y; ) <X X%an(Nn_l)fo"'
k=1 k=1
From (4.8), we conclude that
n—1 n-1
Z ())kAl) (ﬁa+”> Z k2
k=N, \ Tk 2 k=N,
a Bs : (o +2)/x (¢ +2)/x
<<a+2)<7+ﬂ> {(n—l) _NYI }

B“ (2 +2)/
< o a N(oz+2)/a .
(a+2>(2 ) e "

Therefore, by using (4.9) and the last two inequalities, we conclude that

[n/2] B
7 e s () (B e

k=1

and so

where

& ﬂ‘l o o
Ko =Ny = D + (225 ) B ) Wi,

which proves (4.6).
Finally, to prove (4.7), we start with (4.8) to get

1 1 /B, )
—< +
Ve 'Ynl<2 1

<! (ﬂ“ )[n(n 1)

Yn—2

s)’er(%i_'_n) . [n(n—l)...(N”_},])N"]‘/u
(Np—1)
< -(%+n> (n1) '/“/(ﬂ“m) [(N,—1)11%, (410)
Ny—1

forallnzN,,.
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Next, from (4.1) we have

Yk—1
max ( < XN,

1<k Ny—1 ’yk

which gives

1 1

— <Xy, forall k=1,2,3,.,N,—L
Ve Yk-1
Therefore,
1 1 1
< Xy, €——x3y € oo g —x P 1),
Thg=1 Yny—2 H VNg—s T 0

By combining this inequality with (4.10), we can easily see that

2n
;—2<A(a, ") (%m) (),

n

where

1 B, 2ANy— 1)
atm =y [(Gen) T Lv, -0

0

which completes the proof of the lemma.

Lemma 4.4. For all zeC, with |z| > x,,, we have

[pa(w;2)| 7! <

Val2l”
2 o {a+ 2V
X exp K(a, 1)+ (2/{e+2))(B./2+ 1) n , (@11)
IZIZ—X%"
and for all |z| > x, ,,, we have
|Pa(Was 2) Pus1(Was 2)]
1 1
\‘yn’}"n+1 |Z|2n+l
2K(o, 1) + 2(a/ (o + 2)) (B /2 + 1) (n+ 1)@+ D=
B NS
Ln+1

where K(a, 1) as in Lemma 4.3.
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Proof. First, we note that (4.12) is a direct consequence of (4.11) and
the fact that x,,<x, ,.,. So we give the proof of (4.11) only.

Since w, is an even weight function, it follows that (see [I8,
Sect. 2.3(2)])

[n/2]
. N —2[n2 2 2
p"(W"z,Z)=,’,,Z” (2] n (Z _xkn)'
k=1

Hence, for any z e C, with |z| > x,,, we have

[n/2]

|Palwas 2) =y,l21" 2072 T 127 — xg,l
k=1

(n/2}

Y log

k=1

[n/2] x2
Zynlzl"cxp{ 1og<1——";)}
k=1 |z|

2 2
N n 2 Xkn
Zylzl"exp| — 3 2 )’
z

2
1— xkn
-2

p4

=7¥alz|" exp (

and we also have

Lot
21 = xZ,  lzI*—x

forall k=1,2,3,.,n,

2 s
1n

which implies that

L L
JXUREINES lzl,,6Xp< _y xk,,>.

3
|z)" — x1, « 2

The proof of (4.11) follows by combining (4.6) with this last inequality.

5. PROOFS OF THEOREMS 3.1-3.3

The proofs of Theorems 3.1-3.3 start by looking at the error terms that
are given in (2.1), (2.2), and (2.3). In each case, we take the absolute value
of the error and we estimate the factors that appear on the right-hand side
from above. The previous section gives us basically all the estimates that
are needed to accomplish this task. Moreover, the same technique that we
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used in the proof of [1, Theorem 2.1] can be used in proving these
theorems. Hence, in view of this brief introduction, we find it appropriate
to prove Theorem 3.1 only.

Proof of Theorem 3.1. From Lemma 4.2, it can easily be seen that the
proof will be finished if we show that

lim sup (|4&9))/" < 1.

n-— 0

To do so, let

Yusr 1 S(z) dz
[ o=tn+t -
" (ﬁcn Pal

Yn 27” wa;z)pn+l(wa;z)’
and choose C, to be the circle |z| = R,,, such that

Rﬁ,xll";‘ for a<e<l. (5.1)

Using (4.12) with |z] = R,,, we conclude that

|Pu(Wa3 2) Prir(Was2) 71
< 1 1
\yn‘J)n+1 R2"+1

2K(o, 1) + 2(0/(2+ 2))(Bo/2+ )? (1 + 1)+ 2
{ R } (5.2)

From the assumption that ¢ =lim sup, _, ., (log M(R))/2R* we can find,
for any 6 >0, an N;e N such that

M(R,)<exp{2(c +9) R}, (53)

for all R, > Nj.
Using (5.2), (4.7), and (5.3), we conclude, for large enough R, that

By N e !
i<t (F4n) 0 o

ld

.exp{2(0+5)Rﬁ <2K(°‘ ")+2< +2>

(ﬁ“ ) (n+1)‘“+2’/“>/st,}.
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Next, we choose an R, which minimizes the right-hand side of this last
inequality, and which, at the same time, satisfies (5.1) for a<e< 1. So we
consider the function

h(R)=%~exp{2(a+5)R“ <2K(a r])+2< +2>

B 2 !
(7“+ »7) (n+ 1)“’”’“)/ aRZ}.

By differentiating #(R) and setting #'(R) =0, we get
a+2 2
20(6+8) R*** ——<42K(a +n) +2 +2

2
x<%+n) O (54)

Hence, we choose R, to satisfy (5.4), and from this choice of R, and (4.5),
we obtain that

2
R2> Xin+1
n=

{2(a+2)(0 +3) efz} 7"

Consequently, (5.1) will be satisfied if

(1_8)(a+2)/2 (l_a)(a+2)/2
2a+2) B 2@+2) fa

o+0=
From (5.4), we have

._2n a
2(c +d) R +<4K(a r})+4< +2)

2
x (%3+n> (n+ 1)‘“2’/"‘>/a8Rﬁ.

Therefore,
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Ba 2on/(ax+2)
|u<Awm( )

-I:(a+2) 8(a+6):|2"/(“2) . (n_!>2/a

2 n"

2n (4+ 20) (o + 2)7C+? (g + §)V=+2D
exXp + 22/(a+2)£a/(a+2)a(ﬂa/2 + '1)4/(a+2) (n + 1)2/(,

[K(oc 11)+( +2>(@“ n) n+1)‘°‘+2’/"‘J}.

By using (5.5) and the Stirling formula, we can rewrite the last inequality,
for sufficiently large n, as

) < vy e {(257) 1+ 7o)

.exp [b + (128 ) (1+ Tz(n))]}"

where 4*(a, ) is a constant that depends on « and #, b, = 0 as n — o0, and
T.(n)—=0asn—-0,i=1,2

Since g(e)={((1—e)/4)exp((1 —¢)/2e) is a continuous, decreasing
function on (0, 1) and g(a)=1, it follows that 0 < g(¢) <1 for a<e<1.
Consequently, we can find, for a small enough # and a large enough n, a
number p <1 such that

1= )(1+T1('l))exp{b +<1 )(1+T2(n))}<p<1a

which establishes that the series ), |/, | is convergent.
Therefore, for sufficiently large n, we have

1—
s

A& < Y |LI<M(a,n,€)n {

k=n

-eXp [b + (1 ) (1+ Tz(n))]}”

where M(a, 1, ¢) is a constant that depends on a, #, and e.
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Hence,

lim sup |4 0)/"

n— oo

{52 arnon e [(17_6‘3) 1+ 700 |},

4

Since 5 can be chosen as small as we like, and T;(1) — 0 as  —= 0, it follows
that

lim sup {4>9|V" < g(e) < 1,

n— o0

which proves Theorem 3.1.

APPENDIX

We conclude this paper by giving a table of the approximate values of
() for some values of « in [0.1, 10.0] (see Table I), and we also give two
graphs of t(x) for a in {0.0, 10.0] and [0.0, 30.0] (see Figs. 1 and 2). The
table and the graphs were obtained and plotted by Mathematica on a
Macintosh PC.

TasLe 1
o () « 7(a)
0.1 0.0726623 52 0.199904
04 0.20815 55 0.190176
0.7 0.274788 58 0.180896
1.0 0.306916 6.1 0.172052
1.3 0.320245 6.4 0.163636
1.6 0.322793 6.7 0.155634
19 0.31898 7.0 0.148028
22 0.311377 73 0.140803
25 0.301544 7.6 0.133942
28 0.290456 79 0.127427
31 0.278733 8.2 0.121242
34 0.26678 8.5 0.115371
3.7 0.254857 8.8 0.109797
40 0.243136 9.1 0.104506
43 0.231724 94 0.099482
4.6 0.220692 9.7 0.0947121

49 0.210078 10.0 0.0901826
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